Dynamics of CMEs in Interplanetary Space

Valbona Kunkel (GMU/NRL)

James Chen (NRL)

Russ Howard (NRL)

INTRODUCTION

LASCO observations

- Most CMEs can be interpreted as flux ropes (Chen et al. 1997)
- ➤ CME dynamics observed up to 30 Rs
 → Modeling limited to 2 30 Rs
- SECCHI observations much wider field of view than LASCO
 - New challenges and opportunity to test the flux-rope hypothesis and our understanding of CME dynamics
- Magnetic clouds (MCs) defined by Burlaga et al. (1981) are the current channels of CME flux ropes (Kunkel and Chen 2010)
- This talk, analyse CME propagation from the Sun to 1 AU by using Flux Rope Model
 - > Examine dynamics as a diagnostic of flux ropes: Characteristic magnetic forces
- I will focus on what determines the B field at 1 AU and show that
 - the CME height-data trajectory alone allows us to predict the B field at 1 AU and
 - the strength of B field and the CME arrival time at 1 AU depend on the amount of poloidal magnetic energy injected.

FLUX ROPE GEOMETRY

Initial Structure:

- Flux rope parameters: Specify Z, S_f, R/a
 - Footpoint separation distance is fixed
 - $-R = determined by Z, S_f$
 - Set $R_0/a_0 = 2$ (based on previous work)
- Pressure: $p_a(Z)$ = outside flux rope (model), \bar{p}_0 = inside (specified, usually $p_a/2$)
- B_c = overlying coronal field (specified)
- Initial Equilibrium: forces are balanced
 - Electric currents: I_t , I_p (calculated)
 - Magnetic field: B_p , B_t (calculated)
 - Total mass: M_T (calculated)

PHYSICS OF CMEs: Forces

- "Toroidal" magnetic flux rope with fixed footpoints separated by S_f
- Major Radial Forces: integrate $\mathbf{f} = \rho d\mathbf{v} / dt = c^{-1} \mathbf{J} \mathbf{x} \mathbf{B} \nabla \rho + \rho \nabla \phi_g$

$$M \frac{d^2 Z}{dt^2} = \frac{\Phi_p^2(t)}{c^4 L^2 R} \left[\ln \left(\frac{8R}{a} \right) + \frac{1}{2} \beta_p - \frac{1}{2} \frac{B_t^2}{B_p^2} + 2 \left(\frac{R}{a} \right) \frac{B_c}{B_p} - 1 + \frac{\xi_i}{2} \right] + F_g + F_d$$

$$M\frac{d^2a}{dt^2} = \frac{a}{4} \left(B_t^2 - B_p^2 + \beta_p B_p^2 \right)$$

$$\Phi_p = cLI_t, \qquad L = 4\pi \Theta R \left[\ln \left(\frac{8R}{a_f} \right) - 2 \right]$$

Initiation of eruption:

$$\frac{d\Phi_p(t)}{dt} = \text{poloidal flux "injection"}$$

[Shafranov 1966; Chen 1989; Garren and Chen 1994]

DRAG FORCE

- Use drag force to account for momentum coupling between the flux rope and the ambient plasma
- Drag force: the expanding flux rope displaces the surrounding plasma, transferring momentum

$$F_d = 2C_d a \rho_{SW} [V_{SW} - (V + 2w)] | V_{SW} - (V + 2w) |$$

Chen (JGR, 1996)

CONSTRAINTS ON INITIAL CONDITIONS

- Initial Flux Rope (3 April 2010) source region is identified
 - Use EUVI and MDI data to determine footpoints (S_f) , height (Z_0)

Footpoints

$$-S_{f=1.0 \ 10}^{10} \text{ cm}$$

$$-Z_{0=3.1}^{2}$$
 cm

HEIGHT-TIME MEASUREMENT

Track leading-edge height

Stereo A, COR 2

Stereo A, COR 1

SYNTHETIC CORONAGRAPH IMAGES OF CME AT 1AU

MAGNETIC FIELD GEOMETRY IN 3D

$$B_{p}(r \mid t) = \begin{cases} 3B_{pa} \left(1 - \frac{r^{2}}{a^{2}(t)} + \frac{r^{4}}{3a^{4}(t)} \right), & r \leq a(t), \\ 3B_{pa} \frac{r}{a(t)}, & r > a(t), \end{cases}$$

$$B_{t} = \begin{cases} 3B_{t} \left(1 - 2\frac{r^{2}}{a(t)^{2}} + \frac{r^{4}}{a(t)^{4}} \right), & r \leq a(t) \\ 0, & r > a(t) \end{cases}$$

a(t) is given by the equation of motion.

EVOLUTION OF B FIELD AT 1AU

Physically, MC (Burlaga) = current channel

MAGNETIC FIELD IN 1 AU AND S_f

Output quantities of minimum –D solutions

Best-Fit Initial Flux Rope parameters for 2007 Dec 24 Event

G	S _f	Z ₀	B _{c0}	B _{total}	V _{sw}	Arriving Time 1AU	Arriving Time 1AU
	$\left[10^5 \ km\right]$	$\left[10^5 \ km\right]$	[G]	[nT]	$\left[km\ s^{-1}\right]$	[hours]	[Date / hours]
1.75	1.0	0.4	-1.0	14.20	400	149	Dec 30, 7UT
0.96	1.2	0.6	-1.0	13.80	400	151.5	Dec 30, 9UT
0.35	1.8	0.8	-1.0	13.40	450	156.5	Dec 30, 12.5UT
0.42	2.0	0.8	-1.0	13.20	450	159	Dec 30, 15UT
0.75	2.5	1.2	-1.0	13.10	500	160	Dec 30, 18UT
1.76	3.0	1.8	-1.0	18.80	500	164.5	Dec 30, 22.5UT

THEORY FIT TO CME TRAJECTORY

EVOLUTION OF B FIELD AT 1AU

Poloidal Flux and GOES soft X-ray flux

G	Φ_{p0}	$(d\Phi_p / dt)$ ($(\Delta U_p)_{tot}$	B(1AU)	T(1AU)
	[Mx]	[Mx / sec]	[erg]	[nT]	[UT]
3.07	4.55 10 ²⁰	7.29 10 ¹⁸	8 10 ³¹	23	56
1.15	4.55 10 ²⁰	4.99 10 ¹⁸	8 10 ³¹	23	56
0.89	4.55 10 ²⁰	3.96 10 ¹⁸	8 10 ³¹	23	56

SUMMARY

- I have studied CME propagation using STEREO data and the flux rope model
 - Comparison of model and data shown very good agreement
- The essential ingredients of the model are:
- (1) The CME is a magnetic flux rope with fixed footpoints in the photosphere;
- (2) The initial equilibrium structure is set into motion by injection of the poloidal;
- (3) The "hoop force" (J x B) acting on the flux rope provides the acceleration;
- (4) the momentum of the erupting flux rope is coupled to the ambient coronal plasma by drag
- (5) the hoop force dominates in the inner corona but the drag force competes with the hoop force, resulting in both acceleration and deceleration.
- Magnetic field and arrival time of the CME at 1AU are not sensitive to the Flux injection profile provided that the injected poloidel magnetic energy is unchanged
- Compared the predicted magnetic field at 1 AU with IMPACT/PLASTIC data on STEREO finding good agreement

CALCULATED MAGNETIC FIELD

$$B_{p}(r \mid t) = \begin{cases} 3B_{pa} \left(1 - \frac{r^{2}}{a^{2}(t)} + \frac{r^{4}}{3a^{4}(t)} \right), & r \leq a(t), \\ 3B_{pa} \frac{r}{a(t)}, & r > a(t), \end{cases}$$

$$B_{t} = \begin{cases} 3B_{t} \left(1 - 2\frac{r^{2}}{a(t)^{2}} + \frac{r^{4}}{a(t)^{4}} \right), & r \leq a(t) \\ 0, & r > a(t) \end{cases}$$

a(t) is given by the equation of motion.

THEORY FIT TO CME TRAJECTORY

Two phases of acceleration: the *main* and *residual* acceleration phases

The main phase: Lorentz force (**J** x **B**) dominates

The residual phase: All forces are comparable, all decreasing with height A general property: verified in ~30 CME and EP events (also *Zhang et al.* 2001)